A309323 Expansion of Sum_{k>=1} phi(k) * x^k/(1 - x^k)^4, where phi = Euler totient function (A000010).
1, 5, 12, 26, 39, 76, 90, 152, 191, 275, 296, 492, 467, 674, 798, 1000, 985, 1467, 1348, 1934, 2011, 2360, 2322, 3420, 3085, 3791, 4062, 4944, 4523, 6454, 5486, 7168, 7237, 8189, 8340, 10942, 9175, 11300, 11714, 14208, 12381, 16759, 14232, 18036, 18549, 19706, 18470
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nmax = 47; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[Sum[EulerPhi[n/d] d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 1, 47}] Table[Sum[Sum[Sum[GCD[i, j, k, n], {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 1, 47}]
Formula
a(n) = Sum_{d|n} phi(n/d) * d * (d + 1) * (d + 2)/6.
a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} gcd(i,j,k,n).
Sum_{k=1..n} a(k) ~ 15 * zeta(3) * n^4 / (4*Pi^4). - Vaclav Kotesovec, May 23 2021
Comments