cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309336 a(n) = n^4 if n odd, 15*n^4/16 if n even.

Original entry on oeis.org

0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561, 9375, 14641, 19440, 28561, 36015, 50625, 61440, 83521, 98415, 130321, 150000, 194481, 219615, 279841, 311040, 390625, 428415, 531441, 576240, 707281, 759375, 923521, 983040, 1185921, 1252815, 1500625, 1574640, 1874161, 1954815
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 24 2019

Keywords

Comments

Moebius transform of A285989.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^4, 15 n^4/16]; Table[a[n], {n, 0, 38}]
    nmax = 38; CoefficientList[Series[x (1 + 15 x + 76 x^2 + 165 x^3 + 230 x^4 + 165 x^5 + 76 x^6 + 15 x^7 + x^8)/(1 - x^2)^5, {x, 0, nmax}], x]
    LinearRecurrence[{0, 5, 0, -10, 0, 10, 0, -5, 0, 1}, {0, 1, 15, 81, 240, 625, 1215, 2401, 3840, 6561}, 39]
    Table[n^4 (31 - (-1)^n)/32, {n, 0, 38}]

Formula

G.f.: x * (1 + 15*x + 76*x^2 + 165*x^3 + 230*x^4 + 165*x^5 + 76*x^6 + 15*x^7 + x^8)/(1 - x^2)^5.
G.f.: Sum_{k>=1} J_4(k) * x^k/(1 - x^(2*k)), where J_4() is the Jordan function (A059377).
Dirichlet g.f.: zeta(s-4) * (1 - 1/2^s).
a(n) = n^4 * (31 - (-1)^n)/32.
a(n) = Sum_{d|n, n/d odd} J_4(d).
Sum_{n>=1} 1/a(n) = 241*Pi^4/21600 = 1.086832913851601267313987...
Multiplicative with a(2^e) = 15*2^(4*e-4), and a(p^e) = p^(4*e) for odd primes p. - Amiram Eldar, Oct 26 2020