A248869 Satisfies Sum_{n>=0} a(n)*x^n = x * Product_{n>=0} (1 + x^n + x^(2*n))^a(n).
0, 1, 1, 2, 3, 7, 15, 34, 79, 190, 459, 1136, 2833, 7154, 18206, 46723, 120656, 313514, 818763, 2148434, 5660790, 14972103, 39734107, 105779291, 282403830, 755921733, 2028277115, 5454368549, 14697955778, 39682793675, 107330573239, 290783511134, 789032648219
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2213
Programs
-
Maple
h:= proc(n, m, t) option remember; `if`(m=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, m-j, t+1), j=1..min(2, m)))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n-1$2)): seq(a(n), n=0..35); # Alois P. Heinz, Sep 04 2018
-
Mathematica
h[n_, m_, t_] := h[n, m, t] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1], {j, 1, Min[2, m]}]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]]; a[n_] := If[n < 2, n, b[n - 1, n - 1]]; a /@ Range[0, 32] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 2.8458470164106425911151048..., c = 0.41694347809945986693376... . - Vaclav Kotesovec, Mar 17 2015
Comments