cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309356 MM-numbers of labeled simple covering graphs.

Original entry on oeis.org

1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947, 949
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

First differs from A322551 in having 377.
Also products of distinct elements of A322551.
A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
Covering means there are no isolated vertices, i.e., the vertex set is the union of the edge set.

Examples

			The sequence of edge sets together with their MM-numbers begins:
    1: {}
   13: {{1,2}}
   29: {{1,3}}
   43: {{1,4}}
   47: {{2,3}}
   73: {{2,4}}
   79: {{1,5}}
  101: {{1,6}}
  137: {{2,5}}
  139: {{1,7}}
  149: {{3,4}}
  163: {{1,8}}
  167: {{2,6}}
  199: {{1,9}}
  233: {{2,7}}
  257: {{3,5}}
  269: {{2,8}}
  271: {{1,10}}
  293: {{1,11}}
  313: {{3,6}}
  347: {{2,9}}
  373: {{1,12}}
  377: {{1,2},{1,3}}
  389: {{4,5}}
  421: {{1,13}}
		

Crossrefs

Simple graphs are A006125.
The case for BII-numbers is A326788.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]