A281889
a(n) is the least integer k such that more than half of all integers are divisible by a product of n integers chosen from 2..k.
Original entry on oeis.org
3, 7, 433, 9257821
Offset: 1
For n=1, we have a(1) = 3 since for all m > 1, more than half of the integers in -m..m are divisible by an integer chosen from 2..3, i.e., either 2 or 3. We must have a(1) > 2, because the only integer in 2..2 is 2, but in each interval -2m-1..2m+1, only 2m+1 integers are even, so 2 is not a divisor of more than half of all integers in the precise sense given above.
A126283
Largest number k for which the n-th prime is the median of the largest prime dividing the first k integers.
Original entry on oeis.org
4, 18, 40, 76, 116, 182, 246, 330, 426, 532, 652, 770, 904, 1058, 1210, 1386, 1560, 1752, 1956, 2162, 2394, 2640, 2894, 3150, 3422, 3680, 3984, 4302, 4628, 4974, 5294, 5650, 5914, 6006, 6372, 6746, 7146, 7536, 7938, 8386, 8794, 9222, 9702, 10156
Offset: 1
a(1)=4 because the median of {2,3,2} = {2, *2*,3} is 2 (the * surrounds the median) and for any number greater than 4 the median is greater than 2.
a(1)=18 because the median of {2,3,2,5,3,7,2,3,5,11,3,13,7,5,2,17,3} = {2,2,2,2,3,3,3,3, *3*,5,5,5,7,7,11,13,17}.
-
t = Table[0, {100}]; lst = {}; Do[lpf = FactorInteger[n][[ -1, 1]]; AppendTo[lst, lpf]; mdn = Median@lst; If[PrimeQ@ mdn, t[[PrimePi@mdn]] = n], {n, 2, 10^4}]; t
Showing 1-2 of 2 results.
Comments