cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309368 a(n) = Sum_{d|n} prime(n/d)^d.

Original entry on oeis.org

2, 7, 13, 32, 43, 129, 145, 405, 660, 1417, 2079, 5999, 8233, 18903, 37271, 74912, 131131, 300239, 524355, 1139985, 2180263, 4372491, 8388691, 17853809, 33715580, 68704969, 136183123, 274127445, 536871021, 1100025921, 2147483775, 4343912079, 8638792645, 17309012967, 34380645545
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[n/d]^d, {d, Divisors[n]}], {n, 1, 35}]
    nmax = 35; CoefficientList[Series[Sum[Prime[k] x^k/(1 - Prime[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 35; CoefficientList[Series[-Log[Product[(1 - Prime[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)*x^k/(1 - prime(k)*x^k).
L.g.f.: -log(Product_{k>=1} (1 - prime(k)*x^k)^(1/k)).
a(n) ~ 2^n.