cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309383 a(n) is the smallest b > 1 such that when c is equal to any of the first n composites the congruence b^(c-1) == 1 (mod c) is satisfied, i.e., smallest b larger than 1 such that any member of the set of smallest n composites is a base-b Fermat pseudoprime.

Original entry on oeis.org

5, 13, 25, 73, 361, 361, 2521, 2521, 5041, 5041, 5041, 5041, 55441, 55441, 277201, 3603601, 10810801, 10810801, 10810801, 21621601, 21621601, 367567201, 367567201, 367567201
Offset: 1

Views

Author

Felix Fröhlich, Jul 27 2019

Keywords

Examples

			For n = 4: The four smallest composites are 4, 6, 8, 9 and for those four values of c the congruence b^(c-1) == 1 (mod c) is satisfied with b = 73. Since 73 is the smallest such value of b > 1, a(4) = 73.
		

Crossrefs

Programs

  • PARI
    composites(n) = my(v=[]); forcomposite(c=1, , v=concat(v, [c]); if(#v >= n, return(v)))
    a(n) = my(cp=composites(n)); for(b=2, oo, for(k=1, #cp, if(Mod(b, cp[k])^(cp[k]-1)!=1, break, if(k==#cp, return(b)))))