A309386 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} (-k)^(n-j)*Stirling2(n,j).
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 1, 1, 1, 1, -3, 1, 9, 2, 1, 1, 1, -4, 5, 19, -23, -9, 1, 1, 1, -5, 11, 25, -128, -25, 9, 1, 1, 1, -6, 19, 21, -343, 379, 583, 50, 1, 1, 1, -7, 29, 1, -674, 2133, 1549, -3087, -267, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 0, -1, -2, -3, -4, -5, ... 1, -1, -1, 1, 5, 11, 19, ... 1, 1, 9, 19, 25, 21, 1, ... 1, 2, -23, -128, -343, -674, -1103, ... 1, -9, -25, 379, 2133, 6551, 15211, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * StirlingS2[n, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 07 2021 *)
Formula
E.g.f. of column k: exp((1 - exp(-k*x))/k) for k > 0.
A(0,k) = 1 and A(n,k) = Sum_{j=0..n-1} (-k)^(n-1-j) * binomial(n-1,j) * A(j,k) for n > 0.