A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.
3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1
Examples
The array starts as follows: 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191 3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193 5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73 3, 5, 11, 23, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191 3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139 5, 7, 11, 17, 19, 29, 31, 41, 47, 59, 61, 67, 71, 89 3, 5, 17, 23, 29, 47, 53, 59, 83, 89, 113, 137, 149, 167 3, 7, 13, 31, 37, 43, 67, 73, 97, 151, 157, 163, 181, 211 5, 11, 13, 19, 23, 29, 41, 43, 53, 61, 71, 79, 83, 89 3, 11, 17, 23, 41, 47, 53, 59, 83, 89, 107, 131, 137, 173 7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 59, 73, 79, 83
Links
- Wikipedia, Polignac's conjecture
Crossrefs
Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).
Programs
-
PARI
row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++)) array(rows, cols) = for(x=1, rows, row(x, cols); print("")) array(12, 14) \\ Print initial 12 rows and 14 columns of the array
Comments