A309417 Number of steps needed to reduce 10^n to zero by subtracting its digital sum.
2, 11, 81, 611, 4798, 39320, 333583, 2897573, 25632474, 230231687, 2091437006, 19145032382, 176258021378, 1630867803755, 15161044498785, 141573907590908, 1327916557473475, 12513166293358138, 118472791400037286, 1126683083504083356, 10754171449735292485
Offset: 1
Examples
a(100)=11 since 100->99->81->72->63->54->45->36->27->18->9->0.
Links
- Dominic McCarty, Table of n, a(n) for n = 1..500
- Dominic McCarty, Python program for A309417
Crossrefs
Cf. A066568 (n - sum of digits of n).
Programs
-
Mathematica
f[n_] := Length[NestWhileList[# - Total[IntegerDigits[#]]&, n, # > 0 &]]-1; f /@ (10^Range[8]) (* Amiram Eldar, Aug 08 2019 *)
-
PARI
a(n)={my(s=10^n, k=0); while(s, k++; s-=sumdigits(s)); k} \\ Andrew Howroyd, Sep 09 2019
-
Python
import math def digitsum(n): ds = 0 while n > 0: ds += n % 10 n = n // 10 return ds def steps(n): count = 0 while n > 0: n = n - digitsum(n) count += 1 return count n = 1 for i in range(1,10): n = 10 * n print(steps(n))
Extensions
a(13)-a(15) from Giovanni Resta, Sep 10 2019
a(16) and on from Dominic McCarty, Feb 12 2025
Comments