A309429 Least Luhn prime in base 2n: primes p such that p + reverse(p) in base 2n is also a prime.
2, 37, 83, 137, 229, 317, 409, 557, 677, 829, 991, 1187, 1423, 1597, 1871, 2083, 2347, 2633, 2939, 3307, 3581, 3967, 4297, 4673, 5051, 5479, 5927, 6343, 6791, 7349, 7757, 8269, 8783, 9323, 9871, 10463, 11069, 11633, 12251, 12889, 13537, 14207, 14891, 15641
Offset: 1
Examples
a(2) = 37 since 37 = 211 in base 2*2 = 4, and 211+112 = 323 which equals 59 in base 10 and is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Octavian Cira and Florentin Smarandache, Luhn prime numbers, Theory and Applications of Mathematics & Computer Science, Vol. 5, No. 1 (2015), pp. 1-8.
- G. L. Honaker, Jr. and Chris Caldwell, eds., 229, Prime Curios!, November 19, 2001.
Crossrefs
Cf. A061783.
Programs
-
Mathematica
a[b_] := Module[{p=2}, While[!PrimeQ[p + FromDigits[Reverse @ IntegerDigits[p, b], b]], p = NextPrime[p]]; p]; Table[a[n], {n, 2, 88, 2}]
-
PARI
a(n) = {my(p=2); while (!isprime(p+fromdigits(Vecrev(digits(p, 2*n)), 2*n)), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 03 2019
Formula
a(n) > 8*n^2 for n > 1.
Comments