cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309453 The successive approximations up to 7^n for 7-adic integer 5^(1/5).

Original entry on oeis.org

0, 3, 45, 339, 1368, 8571, 42185, 630430, 4748145, 27807349, 27807349, 1722658843, 13586619301, 41269193703, 235047214517, 2269716433064, 30755085492722, 230152668910328, 928044210871949, 2556457808782398, 36753143364901827, 196337675960125829, 2430521132293261857
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2019

Keywords

Examples

			a(1) = (   3)_7 = 3,
a(2) = (  63)_7 = 45,
a(3) = ( 663)_7 = 339,
a(4) = (3663)_7 = 1368.
		

Crossrefs

Cf. A309448.
Expansions of p-adic integers:
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309450 (7-adic, 2^(1/5));
A309451 (7-adic, 3^(1/5));
A309452 (7-adic, 4^(1/5));
A309454 (7-adic, 6^(1/5)).

Programs

  • PARI
    {a(n) = truncate((5+O(7^n))^(1/5))}

Formula

a(0) = 0 and a(1) = 3, a(n) = a(n-1) + (a(n-1)^5 - 5) mod 7^n for n > 1.