cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309465 Sum of the prime parts in the partitions of n into 4 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 7, 11, 28, 31, 56, 68, 101, 117, 165, 187, 267, 307, 385, 445, 563, 621, 780, 878, 1044, 1181, 1405, 1545, 1828, 2019, 2298, 2535, 2901, 3141, 3588, 3915, 4371, 4768, 5311, 5711, 6393, 6880, 7552, 8146, 8957, 9543, 10493, 11218, 12194
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 03 2019

Keywords

Examples

			Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
                                                         1+1+1+9
                                                         1+1+2+8
                                                         1+1+3+7
                                                         1+1+4+6
                                             1+1+1+8     1+1+5+5
                                             1+1+2+7     1+2+2+7
                                 1+1+1+7     1+1+3+6     1+2+3+6
                                 1+1+2+6     1+1+4+5     1+2+4+5
                                 1+1+3+5     1+2+2+6     1+3+3+5
                     1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
         1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
         1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
         1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
         1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
         2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
--------------------------------------------------------------------------
  n  |      8           9          10          11          12        ...
--------------------------------------------------------------------------
a(n) |     28          31          56          68         101        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 08 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[i (PrimePi[i] - PrimePi[i - 1]) + j (PrimePi[j] - PrimePi[j - 1]) + k (PrimePi[k] - PrimePi[k - 1]) + (n - i - j - k) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (i * c(i) + j * c(j) + k * c(k) + (n-i-j-k) * c(n-i-j-k)), where c is the prime characteristic (A010051).