cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309467 Sum of the prime parts in the partitions of n into 6 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 7, 11, 28, 41, 79, 101, 160, 210, 310, 392, 559, 683, 909, 1126, 1464, 1766, 2250, 2687, 3345, 3977, 4853, 5701, 6886, 8012, 9522, 11036, 12979, 14888, 17388, 19842, 22936, 26053, 29853, 33725, 38496, 43219, 48947, 54800, 61768, 68800
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[i (PrimePi[i] - PrimePi[i - 1]) + j (PrimePi[j] - PrimePi[j - 1]) + k (PrimePi[k] - PrimePi[k - 1]) + l (PrimePi[l] - PrimePi[l - 1]) + m (PrimePi[m] - PrimePi[m - 1]) + (n - i - j - k - l - m) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 80}]

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} (i * c(i) + j * c(j) + k * c(k) + l * c(l) + m * c(m) + (n-i-j-k-l-m) * c(n-i-j-k-l-m)), where c is the prime characteristic (A010051).