cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309475 Digits of one of the two 3-adic integers sqrt(-1/2). Here the sequence with first digit 2.

Original entry on oeis.org

2, 0, 1, 0, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 2, 1, 0, 2, 1, 2, 2, 1, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 2, 1, 0, 2, 2, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2019

Keywords

Crossrefs

Programs

  • Maple
    T:= select(t -> padic:-ratvaluep(t, 1)=2, [padic:-rootp(x^2+1/2, 3, 100)]): op([1, 1, 3], T); # Robert Israel, Aug 05 2019
  • PARI
    Vecrev(digits(truncate(-sqrt(-1/2+O(3^100))), 3))

Formula

p = ...100102, p^2 = ...111111.
q = A271224 = ...022012, p * q = ...000001.
a(n) = (b(n+1) - b(n))/3^n, with b(n) = A309477(n).

A309476 One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-1/2).

Original entry on oeis.org

0, 1, 7, 16, 70, 232, 475, 1933, 1933, 8494, 28177, 87226, 87226, 1150108, 2744431, 12310369, 12310369, 55357090, 313637416, 313637416, 1475898883, 1475898883, 1475898883, 32856958492, 221143316146, 221143316146, 1915720535032, 4457586363361, 12083183848348, 34959976303309
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2019

Keywords

Examples

			a(1) = (   1)_3 = 1,
a(2) = (  21)_3 = 7,
a(3) = ( 121)_3 = 16,
a(4) = (2121)_3 = 70.
		

Crossrefs

Programs

  • Maple
    N:= 30: # for a(0) to a(N)
    with(padic):
    A:= rootp(x^2+1/2,3,N):
    if ratvaluep(A[1],1) = 1 then A:= A[1] else A:= A[2] fi:
    seq(ratvaluep(A,i),i=0..N); # Robert Israel, May 11 2020
  • PARI
    {a(n) = truncate(sqrt(-1/2+O(3^n)))}
Showing 1-2 of 2 results.