A309495 Triangle read by rows, derived from A007318, row sums = the Bell Sequence.
1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 9, 17, 21, 1, 5, 14, 34, 67, 82, 1, 6, 20, 58, 148, 290, 354, 1, 7, 27, 90, 275, 701, 1368, 1671, 1, 8, 35, 131, 460, 1411, 3579, 6986, 8536, 1, 9, 44, 182, 716, 2536, 7738, 19620, 38315, 46814, 1, 10, 54, 244, 1057, 4213, 14846, 45251, 114798, 224189, 273907
Offset: 1
Examples
Row 5 of A121207 is (1, 5, 14, 31, 52). Preface with a zero and take the first difference row: (0, 1, 5, 14, 31, 52) (..., 1, 4, 9, 17, 21) = row 5 of the triangle. First few rows of the triangle: 1; 1, 1; 1, 2, 2; 1, 3, 5, 6; 1, 4, 9, 17, 21; 1, 5, 14, 34, 67, 82; 1, 6, 20, 58, 148, 290, 354; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
PARI
\\ here U(n) is A121207. U(n)={my(M=matrix(n,n)); for(n=1, n, M[n,1]=1; for(k=1, n-1, M[n,k+1]=sum(j=1, k, M[n-j, k-j+1]*binomial(n-2,j-1)))); M} T(n)={my(A=U(n+1)); vector(n, n, my(t=A[n+1,2..n+1]); t-concat([0], t[1..n-1]))} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Feb 20 2022
Extensions
Terms a(37) and beyond from Andrew Howroyd, Feb 20 2022
Comments