cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309586 Primes p with 1 zero in a fundamental period of A006190 mod p.

Original entry on oeis.org

2, 3, 23, 43, 53, 61, 79, 101, 103, 107, 127, 131, 139, 173, 179, 191, 199, 211, 251, 263, 277, 283, 311, 347, 367, 419, 433, 439, 443, 467, 491, 503, 523, 547, 563, 569, 571, 599, 607, 647, 659, 677, 719, 727, 751, 757, 823, 829, 859, 881, 883, 887, 907
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A322906(p) = 1.
For p > 2, p is in this sequence if and only if A175182(p) == 2 (mod 4), and if and only if A322907(p) == 2 (mod 4). For a proof of the equivalence between A322906(p) = 1 and A322907(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 3, 23, 27, 35, 43, 51 modulo 52. This corresponds to case (3) for k = 11 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | this seq
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 900, if(A322906(p)==1, print1(p, ", ")))