A309648 Digits of the 10-adic integer (-17/9)^(1/3).
3, 8, 3, 1, 2, 9, 6, 6, 6, 3, 4, 7, 2, 1, 2, 7, 3, 2, 8, 8, 9, 6, 6, 7, 5, 4, 3, 4, 6, 3, 4, 6, 6, 6, 2, 4, 7, 5, 2, 4, 9, 7, 0, 9, 3, 2, 9, 1, 1, 3, 3, 2, 9, 8, 7, 5, 4, 6, 7, 1, 3, 0, 2, 6, 8, 3, 3, 0, 4, 9, 8, 3, 5, 3, 1, 9, 6, 1, 4, 0, 3, 8, 6, 4, 6, 2, 0, 2, 7, 6, 3, 3, 0, 9, 9, 9, 4, 6, 2, 2
Offset: 0
Examples
3^3 == 7 (mod 10). 83^3 == 87 (mod 10^2). 383^3 == 887 (mod 10^3). 1383^3 == 8887 (mod 10^4). 21383^3 == 88887 (mod 10^5). 921383^3 == 888887 (mod 10^6).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A309600
Programs
Formula
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.