A309653 Composite numbers k such that phi(k) * psi(k) + 1 is a perfect square, where phi is the Euler totient function (A000010) and psi is the Dedekind psi function (A001615).
6, 8, 20, 22, 33, 69, 82, 156, 171, 190, 198, 295, 354, 451, 581, 664, 1119, 1142, 1175, 1184, 2812, 2893, 4043, 4163, 4262, 4581, 5090, 6964, 7018, 12977, 14927, 15026, 15753, 19105, 22828, 22926, 25132, 25369, 28919, 29746, 38013, 39146, 47932, 74666, 80375
Offset: 1
Keywords
Examples
8 is in the sequence since phi(8) * psi(8) + 1 = 4 * 12 + 1 = 49 = 7^2 is a perfect square.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500 (terms 1..200 from Robert Israel)
Programs
-
Maple
filter:= proc(n) local t; if isprime(n) then return false fi; issqr(1 + mul(t[1]^(2*t[2]-2)*(t[1]^2-1),t=ifactors(n)[2])) end proc: select(filter, [$2..10^5]); # Robert Israel, Aug 13 2019
-
Mathematica
f[p_, e_] := (p^e - p^(e - 1))*(p^e + p^(e - 1)); psiphi[n_] := Times @@ (f @@@ FactorInteger[n]); aQ[n_] := CompositeQ[n] && IntegerQ@Sqrt[psiphi[n] + 1]; Select[Range[1000], aQ]
-
PARI
mypsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615 isok(k) = !isprime(k) && issquare(eulerphi(k)*mypsi(k) + 1); \\ Michel Marcus, Aug 11 2019
Comments