cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309549 Number of odd parts in the partitions of n into 6 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 5, 10, 13, 22, 27, 42, 52, 76, 94, 128, 156, 208, 247, 314, 376, 468, 551, 674, 787, 948, 1099, 1300, 1496, 1758, 2004, 2324, 2641, 3036, 3425, 3910, 4388, 4974, 5557, 6254, 6956, 7794, 8626, 9608, 10603, 11758, 12922, 14270, 15631
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 07 2019

Keywords

Examples

			a(9) = 13 because the 3 possible partitions into 6 parts, 1+1+1+1+1+4, 1+1+1+1+2+3, and 1+1+1+2+2+2 contain in total 13 odd numbers.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[l, 2] + Mod[m, 2] + Mod[n - i - j - k - l - m, 2], {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
    Table[Count[Flatten[IntegerPartitions[n,{6}]],?(OddQ[#]&)],{n,0,50}] (* _Harvey P. Dale, Aug 20 2024 *)

Formula

a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} ((i mod 2) + (j mod 2) + (k mod 2) + (l mod 2) + (m mod 2) + ((n-i-j-k-l-m) mod 2)).
Showing 1-1 of 1 results.