cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309722 Digits of the 4-adic integer (1/3)^(1/3).

Original entry on oeis.org

3, 0, 3, 2, 1, 1, 0, 1, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 3, 2, 2, 3, 2, 3, 3, 1, 1, 2, 0, 1, 3, 0, 0, 2, 3, 2, 2, 2, 0, 0, 0, 0, 0, 3, 2, 0, 2, 0, 2, 0, 0, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 0, 2, 3, 1, 0, 0, 3, 3, 2, 3, 3, 3, 0, 3, 1, 3, 2, 3, 2, 2, 1, 2, 0, 3, 2, 0, 2, 3, 0, 0, 2, 0, 3, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2019

Keywords

Crossrefs

Digits of the k-adic integer (1/(k-1))^(1/(k-1)): this sequence (k=4), A309723 (k=6), A309724 (k=8), A225464 (k=10).

Programs

  • PARI
    N=100; Vecrev(digits(lift((1/3+O(2^(2*N)))^(1/3)), 4), N)
    
  • Ruby
    def A309722(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (3 * a ** 3 - 1)) % (4 ** (i + 2))
        ary << (b - a) / (4 ** (i + 1))
        a = b
      }
      ary
    end
    p A309722(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (3 * b(n-1)^3 - 1) mod 4^n for n > 1, then a(n) = (b(n+1) - b(n))/4^n.

A309723 Digits of the 6-adic integer (1/5)^(1/5).

Original entry on oeis.org

5, 0, 4, 5, 5, 1, 5, 4, 1, 2, 0, 3, 5, 3, 2, 5, 0, 0, 5, 4, 5, 3, 0, 3, 4, 2, 0, 0, 1, 4, 0, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 5, 3, 1, 1, 5, 2, 0, 5, 4, 2, 2, 5, 4, 0, 2, 5, 5, 4, 2, 1, 1, 4, 2, 2, 4, 5, 4, 1, 5, 0, 1, 0, 4, 2, 1, 3, 4, 0, 1, 2, 0, 0, 3, 3, 1, 3, 4, 2, 3, 4, 2, 5, 0, 3, 3, 0, 1, 2, 0, 4
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2019

Keywords

Crossrefs

Digits of the k-adic integer (1/(k-1))^(1/(k-1)): A309722 (k=4), this sequence (k=6), A309724 (k=8), A225464 (k=10).
Cf. A309699.

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((1/5+O(2^N))^(1/5), 2^N), Mod((1/5+O(3^N))^(1/5), 3^N))), 6), N)
    
  • Ruby
    def A309723(n)
      ary = [5]
      a = 5
      n.times{|i|
        b = (a + 5 * (5 * a ** 5 - 1)) % (6 ** (i + 2))
        ary << (b - a) / (6 ** (i + 1))
        a = b
      }
      ary
    end
    p A309723(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 5, b(n) = b(n-1) + 5 * (5 * b(n-1)^5 - 1) mod 6^n for n > 1, then a(n) = (b(n+1) - b(n))/6^n.
Showing 1-2 of 2 results.