A309742 Numbers k such that 8*10^(2*k) + 8*10^k + 1 are prime.
0, 1, 6, 11, 23, 297, 474, 1121, 2531, 3573, 5437, 5919
Offset: 1
Examples
17 is prime. ==> a(1) = 0. 881 is prime. ==> a(2) = 1. 80801 = 7^2 * 17 * 97. 8008001 = 47 * 170383. 800080001 = 7 * 23 * 103 * 48247. 80000800001 = 71 * 1126771831. 8000008000001 is prime. ==> a(3) = 6.
Crossrefs
Cf. A309739.
Programs
-
PARI
for(k=0, 1e3, if(ispseudoprime(8*100^k+8*10^k+1), print1(k", ")))
-
Python
from sympy import isprime def afind(limit, startk=0): for k in range(startk, limit+1): if isprime(8*100**k + 8*10**k + 1): print(k, end=", ") afind(500) # Michael S. Branicky, Dec 12 2021
Extensions
a(11) from Michael S. Branicky, Dec 12 2021
a(12) from Michael S. Branicky, Apr 16 2023