A309785 The number of non-equivalent distinguishing coloring partitions of the cycle on n vertices with at most k parts (k>=1). The cycle graph is defined for n>=3; extended to n=1,2 using the closed form. Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the cycle, and the columns are indexed by k, the number of parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 4, 1, 0, 0, 0, 1, 2, 6, 9, 1, 0, 0, 0, 1, 2, 7, 19, 26, 4, 0, 0, 0, 1, 2, 7, 22, 58, 66, 7, 0, 0, 0, 1, 2, 7, 23, 74, 195, 183, 18, 0, 0, 0, 1, 2, 7, 23, 77, 279, 651, 488, 31, 0
Offset: 1
Examples
Table begins: ============================================================= n\k| 1 2 3 4 5 6 7 8 9 10 ---+--------------------------------------------------------- 1 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ... 2 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ... 3 | 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ... 4 | 0, 0, 1, 2, 2, 2, 2, 2, 2, 2 ... 5 | 0, 0, 4, 6, 7, 7, 7, 7, 7, 7 ... 6 | 0, 1, 9, 19, 22, 23, 23, 23, 23, 23 ... 7 | 0, 1, 26, 58, 74, 77, 78, 78, 78, 78 ... 8 | 0, 4, 66, 195, 279, 306, 310, 311, 311, 311 ... 9 | 0, 7, 183, 651, 1084, 1255, 1292, 1296, 1297, 1297 ... 10 | 0, 18, 488, 2294, 4554, 5802, 6140, 6194, 6199, 6200 ... ... ------- For n=6, we can partition the vertices of C_6 into at most 4 parts in 10 ways such that all these partitions induce distinguishing colorings for C_6 and that all the 10 partitions are non-equivalent. { { 1 }, { 2 }, { 3 }, { 4, 5, 6 } } { { 1 }, { 2 }, { 3, 4 }, { 5, 6 } } { { 1 }, { 2 }, { 3, 4, 6 }, { 5 } } { { 1 }, { 2 }, { 3, 5 }, { 4, 6 } } { { 1 }, { 2 }, { 3, 6 }, { 4, 5 } } { { 1 }, { 2, 3 }, { 4 }, { 5, 6 } } { { 1 }, { 2, 3 }, { 4, 6 }, { 5 } } { { 1 }, { 2, 4 }, { 3, 6 }, { 5 } } { { 1 }, { 2, 4, 6 }, { 3 }, { 5 } } { { 1 }, { 2, 5 }, { 3, 6 }, { 4 } }
Links
- Bahman Ahmadi, GAP Program
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Formula
T(n,k) = Sum_{i=1..k} A309784(n,i).
Comments