cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309791 Expansion of (1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5).

Original entry on oeis.org

1, 9, 3, 15, 6, 78, 24, 132, 51, 699, 213, 1185, 456, 6288, 1914, 10662, 4101, 56589, 17223, 95955, 36906, 509298, 155004, 863592, 332151, 4583679, 1395033, 7772325, 2989356, 41253108, 12555294, 69950922, 26904201, 371277969, 112997643, 629558295, 242137806, 3341501718, 1016978784, 5666024652
Offset: 0

Views

Author

Georg Fischer, Aug 17 2019

Keywords

Comments

This sequence and its companion A309792 describe the additive constants which occur in an infinite series of maps from the row indices in the table defined by A307048 to the arithmetic progression contained in a specific column of that table. Only rows with indices of the form 6*j - 2 are concerned, and j is mapped to the unique term in that row (cf. example).
Conjecture: Any finite subset of these maps can build chains of finite length only.

Examples

			The maps for k >= 0 start with:
   3*k +  1 ->  8*k +  2 ( 4->10,   7->18,  10->26, ...)
   9*k +  9 ->  8*k +  8 ( 9-> 8,  18->16,  27->24, ...)
   9*k +  3 -> 16*k +  5 ( 3-> 5,  12->21,  21->37, ...)
  27*k + 15 -> 16*k +  9 (15-> 9,  42->25,  69->41, ...)
  27*k +  6 -> 32*k +  7 ( 6-> 7,  33->39,  60->71, ...)
  81*k + 78 -> 32*k + 31 (78->31, 159->63, 240->95, ...)
          ^            ^
          |            |
          A309791      A309792
Chains:
   33 ->  39 ->  69 ->  41
  114 -> 135 -> 120 -> 213 -> 75 -> 133
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 9, -9}, {1, 9, 3, 15, 6}, 32] (* or *) CoefficientList[Series[(1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5), {x, 0, 40}], x]

Formula

a(n) = (1/48)*(-32+2^(n/2)*(42*(1+(-1)^n)-2*(-i)^n+105*sqrt(2)*(1-(-1)^n)+11*i*(-i)^n*sqrt(2)-i^(n+1)*(-2*i+11*sqrt(2)))), where i=sqrt(-1). - Stefano Spezia, Aug 19 2019