A309791 Expansion of (1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5).
1, 9, 3, 15, 6, 78, 24, 132, 51, 699, 213, 1185, 456, 6288, 1914, 10662, 4101, 56589, 17223, 95955, 36906, 509298, 155004, 863592, 332151, 4583679, 1395033, 7772325, 2989356, 41253108, 12555294, 69950922, 26904201, 371277969, 112997643, 629558295, 242137806, 3341501718, 1016978784, 5666024652
Offset: 0
Examples
The maps for k >= 0 start with: 3*k + 1 -> 8*k + 2 ( 4->10, 7->18, 10->26, ...) 9*k + 9 -> 8*k + 8 ( 9-> 8, 18->16, 27->24, ...) 9*k + 3 -> 16*k + 5 ( 3-> 5, 12->21, 21->37, ...) 27*k + 15 -> 16*k + 9 (15-> 9, 42->25, 69->41, ...) 27*k + 6 -> 32*k + 7 ( 6-> 7, 33->39, 60->71, ...) 81*k + 78 -> 32*k + 31 (78->31, 159->63, 240->95, ...) ^ ^ | | A309791 A309792 Chains: 33 -> 39 -> 69 -> 41 114 -> 135 -> 120 -> 213 -> 75 -> 133
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,9,-9).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 0, 9, -9}, {1, 9, 3, 15, 6}, 32] (* or *) CoefficientList[Series[(1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5), {x, 0, 40}], x]
Formula
a(n) = (1/48)*(-32+2^(n/2)*(42*(1+(-1)^n)-2*(-i)^n+105*sqrt(2)*(1-(-1)^n)+11*i*(-i)^n*sqrt(2)-i^(n+1)*(-2*i+11*sqrt(2)))), where i=sqrt(-1). - Stefano Spezia, Aug 19 2019
Comments