cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309815 a(n) is the smallest positive integer x such that sqrt(2) + sqrt(x) is closer to an integer than any other value already in the sequence.

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 21, 112, 243, 275, 466, 761, 1128, 4704, 9523, 10730, 17579, 28085, 41041, 165312, 331299, 372815, 607754, 967441, 1410360, 5648160, 11300259, 12713402, 20707831, 32942845, 48005301, 192060400, 384143763, 432165299, 703818922, 1119543881, 1631318640
Offset: 1

Views

Author

Ben Paul Thurston, Aug 18 2019

Keywords

Comments

If b(n) = round(sqrt(2) + sqrt(a(n))), then (b(n)^2 + 2 - a(n))/(2*b(n)) is an approximation for sqrt(2). Conjecture: all convergents of the continued fraction of sqrt(2) except 1 arise in this way. - Robert Israel, Aug 18 2019

Examples

			a(6) = 13 because sqrt(2)+sqrt(13) is closer to an integer than any of the previous 5 terms.
		

Programs

  • Maple
    R:= 1: delta:= sqrt(2)-1:
    for r from 2 to 10000 do
       x0:= ceil((r - sqrt(2)-delta)^2);
       x1:= floor((r-sqrt(2)+delta)^2);
       for x from x0 to x1 do
         dx:= abs(sqrt(2)+sqrt(x)-r);
         if is(dx < delta) then
           delta:= dx;
           R:= R, x;
         fi
       od
    od:
    R; # Robert Israel, Aug 18 2019
  • Mathematica
    d[x_] := Abs[x - Round[x]]; dm = 1; s = {}; Do[If[(d1 = d[Sqrt[2] + Sqrt[n]]) < dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Aug 18 2019 *)
  • Python
    import math
    a = 2**(1/2)
    l = []
    closest = 1.0
    for i in range(1, 100000000):
        b = i**(1/2)
        c = abs(a+b - round(a+b))
        if c < closest:
            print(i, c)
            closest = c
            l.append(i)
    print(l)

Extensions

More terms from Giovanni Resta, Aug 19 2019