A309815 a(n) is the smallest positive integer x such that sqrt(2) + sqrt(x) is closer to an integer than any other value already in the sequence.
1, 2, 3, 6, 7, 13, 21, 112, 243, 275, 466, 761, 1128, 4704, 9523, 10730, 17579, 28085, 41041, 165312, 331299, 372815, 607754, 967441, 1410360, 5648160, 11300259, 12713402, 20707831, 32942845, 48005301, 192060400, 384143763, 432165299, 703818922, 1119543881, 1631318640
Offset: 1
Keywords
Examples
a(6) = 13 because sqrt(2)+sqrt(13) is closer to an integer than any of the previous 5 terms.
Programs
-
Maple
R:= 1: delta:= sqrt(2)-1: for r from 2 to 10000 do x0:= ceil((r - sqrt(2)-delta)^2); x1:= floor((r-sqrt(2)+delta)^2); for x from x0 to x1 do dx:= abs(sqrt(2)+sqrt(x)-r); if is(dx < delta) then delta:= dx; R:= R, x; fi od od: R; # Robert Israel, Aug 18 2019
-
Mathematica
d[x_] := Abs[x - Round[x]]; dm = 1; s = {}; Do[If[(d1 = d[Sqrt[2] + Sqrt[n]]) < dm, dm = d1; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Aug 18 2019 *)
-
Python
import math a = 2**(1/2) l = [] closest = 1.0 for i in range(1, 100000000): b = i**(1/2) c = abs(a+b - round(a+b)) if c < closest: print(i, c) closest = c l.append(i) print(l)
Extensions
More terms from Giovanni Resta, Aug 19 2019
Comments