cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317675 Coefficients of 3-adic expansion of exp(3).

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 2, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 0, 0, 2, 2, 1, 1, 2, 1, 0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 2, 2, 0, 1, 0, 2, 0, 0, 1, 2, 2, 0, 0, 1, 2, 0, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 1
Offset: 0

Views

Author

Robert Israel, Aug 03 2018

Keywords

Examples

			exp(3) = 1 + 3 + 9/2 + 9/2 + 27/8 + ... = 1 + 3 + 3^2 + 2*3^3 + O(3^4).
		

Crossrefs

Programs

  • Maple
    R:= evalp(exp(3),3,200):
    op([1,3],R);
  • PARI
    N=100; Vecrev(digits(lift(exp(3+O(3^N))), 3), N) \\ Seiichi Manyama, Aug 20 2019

A309901 Approximation of the 3-adic integer exp(-3) up to 3^n.

Original entry on oeis.org

0, 1, 7, 25, 52, 52, 538, 1267, 1267, 1267, 20950, 20950, 198097, 1260979, 1260979, 6043948, 6043948, 92137390, 92137390, 866978368, 2029239835, 5516024236, 26436730642, 57817790251, 246104147905, 810963220867, 1658251830310, 6741983486968, 21993178456942
Offset: 0

Views

Author

Jianing Song, Aug 21 2019

Keywords

Comments

In p-adic field, the exponential function exp(x) is defined as Sum_{k>=0} x^k/k!. When extended to a function over the metric completion of the p-adic field, exp(x) has radius of convergence p^(-1/(p-1)) (i.e., exp(x) converges for x such that |x|_p < p^(-1/(p-1)), where |x|_p is the p-adic metric). As a result, for odd primes p, exp(p) is well-defined in p-adic field, and exp(4) is well defined in 2-adic field.
a(n) is the multiplicative inverse of A309900(n) modulo 3^n.

Crossrefs

Cf. A309900.
The 3-adic expansion of exp(-3) is given by A309866.
Approximations of exp(-p) in p-adic field: this sequence (p=3), A309903 (p=5), A309905 (p=7).

Programs

  • PARI
    a(n) = lift(exp(-3 + O(3^n)))

A309988 Digits of the 7-adic integer exp(-7).

Original entry on oeis.org

1, 6, 3, 4, 2, 3, 5, 3, 2, 0, 1, 4, 1, 1, 0, 5, 3, 2, 3, 4, 0, 0, 5, 6, 1, 1, 1, 0, 6, 1, 2, 2, 2, 5, 2, 4, 2, 4, 3, 1, 6, 2, 0, 6, 6, 4, 2, 2, 5, 3, 2, 5, 0, 3, 0, 6, 1, 1, 2, 2, 1, 1, 0, 1, 3, 4, 2, 6, 4, 3, 1, 4, 1, 4, 3, 1, 2, 6, 0, 4, 3, 5, 4, 4, 1, 4, 2, 1
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

Digits of the multiplicative inverse of A309987.

Crossrefs

Cf. A309905.
Digits of exp(-p) in p-adic field: A309866 (p=3), A309975 (p=5), this sequence (p=7).

Programs

  • PARI
    a(n) = lift(exp(-7+O(7^(n+1))))\7^n

A309975 Digits of the 5-adic integer exp(-5).

Original entry on oeis.org

1, 4, 2, 1, 3, 0, 2, 4, 1, 4, 1, 0, 4, 0, 4, 2, 1, 1, 4, 4, 2, 2, 3, 2, 2, 4, 3, 4, 4, 2, 0, 0, 1, 0, 4, 3, 2, 1, 3, 2, 0, 4, 3, 2, 4, 4, 1, 4, 0, 0, 4, 3, 4, 3, 0, 4, 3, 4, 1, 2, 4, 1, 3, 3, 3, 4, 3, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 2, 2, 2, 0, 2, 3, 1, 3, 2
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

Digits of the multiplicative inverse of A309888.

Crossrefs

Cf. A309903.
Digits of exp(-p) in p-adic field: A309866 (p=3), this sequence (p=5), A309988 (p=7).

Programs

  • PARI
    a(n) = lift(exp(-5+O(5^(n+1))))\5^n
Showing 1-4 of 4 results.