A309896 Generalized Fibonacci numbers. Square array read by ascending antidiagonals. F(n,k) for n >= 0 and k >= 0.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 4, 5, 1, 0, 1, 1, 5, 5, 9, 8, 1, 0, 1, 1, 6, 6, 14, 14, 13, 1, 0, 1, 1, 7, 7, 20, 20, 28, 21, 1, 0, 1, 1, 8, 8, 27, 27, 48, 47, 34, 1, 0, 1, 1, 9, 9, 35, 35, 75, 75, 89, 55, 1, 0
Offset: 0
Examples
Array starts: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [2] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... [3] 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, ... [4] 1, 1, 4, 5, 14, 20, 48, 75, 165, 274, 571, 988, ... [5] 1, 1, 5, 6, 20, 27, 75, 110, 275, 429, 1001, 1637, ... [6] 1, 1, 6, 7, 27, 35, 110, 154, 429, 637, 1638, 2548, ... [7] 1, 1, 7, 8, 35, 44, 154, 208, 637, 910, 2548, 3808, ... [8] 1, 1, 8, 9, 44, 54, 208, 273, 910, 1260, 3808, 5508, ... [9] 1, 1, 9, 10, 54, 65, 273, 350, 1260, 1700, 5508, 7752, ...
Links
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
Crossrefs
Programs
-
SageMath
@cached_function def F(n, k): if k < 0: return 0 if k == 0: return 1 a = sum((-1)^j*binomial(n-1-j,j )*F(n,k-1-2*j) for j in (0..(n-1)/2)) b = sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2)) return a + b print([F(n-k, k) for n in (0..11) for k in (0..n)])
Formula
F(n, k) = Sum_{j=0..(n-1)/2} (-1)^j*binomial(n-1-j,j)*F(n, k-1-2*j) + Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0.