cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259475 Array read by antidiagonals: row n gives coefficients of Taylor series expansion of 1/F_{n+1}(t), where F_i(t) is a Fibonacci polynomial defined by F_0=1, F_1=1, F_{i+1} = F_i-t*F_{i-1}.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 8, 1, 0, 1, 5, 13, 21, 16, 1, 0, 1, 6, 19, 40, 55, 32, 1, 0, 1, 7, 26, 66, 121, 144, 64, 1, 0, 1, 8, 34, 100, 221, 364, 377, 128, 1, 0, 1, 9, 43, 143, 364, 728, 1093, 987, 256, 1, 0, 1, 10, 53, 196, 560, 1288, 2380, 3280, 2584, 512, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			The first few antidiagonals are:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  1,  0;
  1, 3,  4,  1,   0;
  1, 4,  8,  8,   1,   0;
  1, 5, 13, 21,  16,   1,  0;
  1, 6, 19, 40,  55,  32,  1, 0;
  1, 7, 26, 66, 121, 144, 64, 1, 0;
  ...
Square array starts:
  [0] 1, 0,  0,   0,    0,    0,     0,     0,      0,       0,       0, ...
  [1] 1, 1,  1,   1,    1,    1,     1,     1,      1,       1,       1, ...
  [2] 1, 2,  4,   8,   16,   32,    64,   128,    256,     512,    1024, ...
  [3] 1, 3,  8,  21,   55,  144,   377,   987,   2584,    6765,   17711, ...
  [4] 1, 4, 13,  40,  121,  364,  1093,  3280,   9841,   29524,   88573, ...
  [5] 1, 5, 19,  66,  221,  728,  2380,  7753,  25213,   81927,  266110, ...
  [6] 1, 6, 26, 100,  364, 1288,  4488, 15504,  53296,  182688,  625184, ...
  [7] 1, 7, 34, 143,  560, 2108,  7752, 28101, 100947,  360526, 1282735, ...
  [8] 1, 8, 43, 196,  820, 3264, 12597, 47652, 177859,  657800, 2417416, ...
  [9] 1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, ...
		

Crossrefs

The initial rows of the array are A000007, A000012, A000079, A001906, A003432, A005021, A094811, A094256.
A(n,n) gives A274969.
Cf. A309896.
A188843 is a variant without the first two rows and the first column, and the antidiagonals read in opposite direction.

Programs

  • Maple
    F:= proc(n) option remember;
          `if`(n<2, 1, expand(F(n-1)-t*F(n-2)))
        end:
    A:= (n, k)-> coeff(series(1/F(n+1), t, k+1), t, k):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 04 2015
  • Mathematica
    F[n_] := F[n] = If[n<2, 1, Expand[F[n-1] - t*F[n-2]]]; A[n_, k_] := SeriesCoefficient[1/F[n+1], { t, 0, k}]; Table[A[d-k, k], {d, 0, 12}, {k, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
  • SageMath
    @cached_function
    def F(n, k):
        if k <  0: return 0
        if k == 0: return 1
        return sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2))
    def A(n, k): return F(n+1, 2*k)
    print([A(n-k, k) for n in (0..11) for k in (0..n)]) # Peter Luschny, Aug 21 2019

Formula

Let F(n, k) = Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0. Then A(n, k) = F(n+1, 2*k). See [Shibukawa] and A309896. - Peter Luschny, Aug 21 2019

Extensions

More terms from Alois P. Heinz, Jul 04 2015

A327990 The Fibonacci Codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).

Original entry on oeis.org

0, 1, 3, 1, 7, 3, 1, 9, 15, 7, 3, 1, 19, 17, 31, 9, 15, 7, 3, 1, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1, 43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1
Offset: 0

Views

Author

Peter Luschny, Oct 08 2019

Keywords

Comments

The Fibonacci codes are binary strings enumerated in an irregular triangle FC(n, k). The first few are shown below in the Example section.
The Fibonacci codes are for n > 1 defined recursively FC(n) = C(n) concatenated with FC(n-1), where C(n) are the conjugates of the compositions of n which do not have '1' as a part and the parts of which were reduced by 1. The recurrence is based in FC(0) = '' (empty string) and FC(1) = '0'.
The Fibonacci numbers are defined F(n) = A309896(2,n) = A000045(n+1) for n >= 0. Row FC(n) contains F(n) codes. A nonzero code is a code that does not consist entirely of zeros. The number of nonzero codes in row n is A001924(n-3) for n>=3.
Fibonacci codes are represented here through
T(n, k) = Sum_{j=0..m} (c[j] + 1)*2^j,
where c = FC(n, k) and m = length(FC(n, k)).

Examples

			The Fibonacci codes start:
[0] [[]]
[1] [[0]]
[2] [[00][0]]
[3] [[000][00][0]]
[4] [[010][0000][000][00][0]]
[5] [[0010][0100][00000][010][0000][000][00][0]]
[6] [[0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]]
[7] [[00110][01010][000010][01100][000100][001000][010000][0000000][0110][00010][00100][01000][000000][0010][0100][00000][010][0000][000][00][0]]
The encoding of the Fibonacci codes start:
[0] [0]
[1] [1]
[2] [3, 1]
[3] [7, 3, 1]
[4] [9, 15, 7, 3, 1]
[5] [19, 17, 31, 9, 15, 7, 3, 1]
[6] [21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1]
[7] [43, 41, 79, 37, 71, 67, 65, 127, 21, 39, 35, 33, 63, 19, 17, 31, 9, 15, 7, 3, 1]
		

Crossrefs

Programs

  • SageMath
    @cached_function
    def FibonacciCodes(n):
        if n == 0 : return [[]]
        if n == 1 : return [[0]]
        A = [c.conjugate() for c in Compositions(n) if not(1 in c)]
        B = [[i-1 for i in a] for a in A]
        return B + FibonacciCodes(n-1)
    def A327990row(n):
        FC = FibonacciCodes(n)
        B = lambda C: sum((c+1)*2^i for (i, c) in enumerate(C))
        return [B(c) for c in FC]
    for n in (0..6): print(A327990row(n))

A327991 The complementary Fibonacci codes. Irregular triangle T(n, k) with n >= 0 and 0 <= k < A000045(n+1).

Original entry on oeis.org

1, 2, 2, 6, 2, 6, 30, 2, 6, 30, 10, 210, 2, 6, 30, 10, 210, 42, 70, 2310, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510
Offset: 0

Views

Author

Peter Luschny, Oct 09 2019

Keywords

Comments

The complementary Fibonacci codes are binary strings enumerated in an irregular triangle CF(n, k). The first few are shown below in the Example section. The complementary Fibonacci codes are the bitwise complements of the Fibonacci codes described in A327990, in ascending order.
The complementary Fibonacci codes are represented here through
T(n, k) = Product_{j=0..m} p(j)^c(j),
where p(j) is the j-th prime number, c = CF(n, k) and m = length(CF(n, k)).

Examples

			The complementary Fibonacci codes start:
[0] [[]]
[1] [[1]]
[2] [[1][11]]
[3] [[1][11][111]]
[4] [[1][11][111][101][1111]]
[5] [[1][11][111][101][1111][1101][1011][11111]]
[6] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111]]
[7] [[1][11][111][101][1111][1101][1011][11111][1001][11101][11011][10111][111111] [11001][10101][111101][10011][111011][110111][101111][1111111]]
The representation of the complementary Fibonacci codes starts:
[0] [1]
[1] [2]
[2] [2, 6]
[3] [2, 6, 30]
[4] [2, 6, 30, 10, 210]
[5] [2, 6, 30, 10, 210, 42, 70, 2310]
[6] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030]
[7] [2, 6, 30, 10, 210, 42, 70, 2310, 14, 330, 462, 770, 30030, 66, 110, 2730, 154, 4290, 6006, 10010, 510510]
		

Crossrefs

The diagonal is A002110 (primorial numbers).

Programs

  • SageMath
    @cached_function
    def FibonacciCodes(n):
        if n == 0 : return [[]]
        if n == 1 : return [[1]]
        A = [c.conjugate() for c in Compositions(n) if not(1 in c)]
        return FibonacciCodes(n-1) + [[2-i for i in a] for a in A]
    def A327991row(n):
        P = Primes()
        M = lambda C: mul(P[i]^c for (i, c) in enumerate(C))
        return [M(c) for c in FibonacciCodes(n)]
    for n in (0..7): print(A327991row(n))
Showing 1-3 of 3 results.