cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309908 a(n) is 2^n represented in bijective base-9 numeration.

Original entry on oeis.org

1, 2, 4, 8, 17, 35, 71, 152, 314, 628, 1357, 2725, 5551, 12212, 24424, 48848, 98797, 218715, 438531, 878162, 1867334, 3845668, 7792447, 16694895, 34499911, 69121922, 149243944, 299487988, 619987187, 1342185385, 2684381781, 5478773672, 11968657454, 24148425918
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

Differs from A001357 first at n = 16: a(16) = 98797 < 108807 = A001357(16).

Examples

			a(10) =  1357_bij9 =       9*(9*(9*1+3)+5)+7 =  1024 = 2^10.
a(16) = 98797_bij9 = 9*(9*(9*(9*9+8)+7)+9)+7 = 65536 = 2^16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) local d, l, m; m:= n; l:= "";
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi; l:= d, l
          od; parse(cat(l))
        end:
    a:= n-> b(2^n):
    seq(a(n), n=0..33);

Formula

a(n) = A052382(2^n) = A052382(A000079(n)).