A309908 a(n) is 2^n represented in bijective base-9 numeration.
1, 2, 4, 8, 17, 35, 71, 152, 314, 628, 1357, 2725, 5551, 12212, 24424, 48848, 98797, 218715, 438531, 878162, 1867334, 3845668, 7792447, 16694895, 34499911, 69121922, 149243944, 299487988, 619987187, 1342185385, 2684381781, 5478773672, 11968657454, 24148425918
Offset: 0
Examples
a(10) = 1357_bij9 = 9*(9*(9*1+3)+5)+7 = 1024 = 2^10. a(16) = 98797_bij9 = 9*(9*(9*(9*9+8)+7)+9)+7 = 65536 = 2^16.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995, 27-29.
- Eric Weisstein's World of Mathematics, Zerofree
- Wikipedia, Bijective numeration
Programs
-
Maple
b:= proc(n) local d, l, m; m:= n; l:= ""; while m>0 do d:= irem(m, 9, 'm'); if d=0 then d:=9; m:= m-1 fi; l:= d, l od; parse(cat(l)) end: a:= n-> b(2^n): seq(a(n), n=0..33);
Comments