cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309949 Decimal expansion of the imaginary part of the square root of 1 + i.

Original entry on oeis.org

4, 5, 5, 0, 8, 9, 8, 6, 0, 5, 6, 2, 2, 2, 7, 3, 4, 1, 3, 0, 4, 3, 5, 7, 7, 5, 7, 8, 2, 2, 4, 6, 8, 5, 6, 9, 6, 2, 0, 1, 9, 0, 3, 7, 8, 4, 8, 3, 1, 5, 0, 0, 9, 2, 5, 8, 8, 2, 5, 9, 5, 6, 9, 4, 9, 0, 8, 0, 0, 2, 0, 3, 2, 3, 3, 4, 4, 8, 2, 9, 1, 5, 9, 1, 4, 0, 1, 8, 1, 9, 7, 6, 1, 0, 2
Offset: 0

Views

Author

Alonso del Arte, Aug 24 2019

Keywords

Comments

i is the imaginary unit such that i^2 = -1.
Multiplied by -1, this is the imaginary part of the square root of 1 - i. And also the real part of -sqrt(1 + i) - i + sqrt(1 + i)^3, which is a unit in Q(sqrt(1 + i)).

Examples

			Im(sqrt(1 + i)) = 0.45508986056222734130435775782247...
		

Crossrefs

Cf. A000108, A010767, A182168, A309948 (real part).

Programs

  • Maple
    Digits := 120: Re(sqrt(-1 - I))*10^95:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Sep 20 2019
  • Mathematica
    RealDigits[Sqrt[1/Sqrt[2] - 1/2], 10, 100][[1]]
  • PARI
    imag(sqrt(1+I)) \\ Michel Marcus, Sep 16 2019

Formula

Equals sqrt(1/sqrt(2) - 1/2) = 2^(1/4) * sin(Pi/8).
Equals sqrt((sqrt(2) - 1)/2) = A010767 * A182168. - Bernard Schott, Sep 16 2019
Equals Re(sqrt(-1 - i)). - Peter Luschny, Sep 20 2019
Equals Product_{k>=0} ((8*k - 1)*(8*k + 4))/((8*k - 2)*(8*k + 5)). - Antonio GraciĆ” Llorente, Feb 24 2024