cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340990 a(n) is the (2n)-th term of the n-fold self-convolution of the primes.

Original entry on oeis.org

1, 3, 29, 291, 3121, 34123, 379853, 4280251, 48681569, 557686227, 6425630909, 74384480019, 864461820049, 10079577033243, 117859582680813, 1381492094548651, 16227770995740865, 190979248798795427, 2251327736286726749, 26579050506578504195, 314212180691846338801
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, ithprime(n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, 1, If[k == 1, Prime[n + 1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 23] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)

Formula

a(n) = [x^(2n)] (Sum_{j>=1} prime(j)*x^j)^n.
a(n) = A340991(2n,n).

A309950 G.f.: Product_{j>=1} (1 + p(x^j)), where p(x) is the g.f. of A000040.

Original entry on oeis.org

1, 2, 5, 11, 22, 43, 78, 140, 238, 405, 665, 1077, 1710, 2685, 4140, 6336, 9551, 14280, 21117, 30994, 45051, 65046, 93170, 132600, 187439, 263449, 367999, 511409, 706833, 972257, 1330929, 1813846, 2461090, 3325803, 4476276, 6002036, 8018216, 10674307, 14161656
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
          add(b(j, 1)*(t-> b(t, min(t, i-1)))(n-i*j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1,
       Prime[n], Sum[b[j, 1]*Function[t,
       b[t, Min[t, i-1]]][n-i*j], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.