A309978 a(n) is the number of positive integers k such that there exists a nonnegative integer m with k + k^m = n.
0, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1
Keywords
Examples
For n = 130 the a(130) = 4 positive integers with valid maps are 129 via 129 + 129^0 = 130, 65 via 65 + 65^1 = 130, 5 via 5 + 5^3 = 130, and 2 via 2 + 2^7 = 130.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Programs
-
PARI
a(n) = {if (n==1, return (0)); my(d = divisors(n)); 1 + sumdiv(n, d, if ((d>1) && (d
Michel Marcus, Oct 16 2019
Formula
a(2n+1) = 1 for all n >= 1.
a(2n) >= 2 for all n >= 2.
Comments