A309992 Triangle T(n,k) whose n-th row lists in increasing order the multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n into distinct parts; n >= 0, 1 <= k <= A000009(n), read by rows.
1, 1, 1, 1, 3, 1, 4, 1, 5, 10, 1, 6, 15, 60, 1, 7, 21, 35, 105, 1, 8, 28, 56, 168, 280, 1, 9, 36, 84, 126, 252, 504, 1260, 1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600, 1, 11, 55, 165, 330, 462, 495, 1320, 2310, 4620, 6930, 27720
Offset: 0
Examples
For n = 5 there are 3 partitions of 5 into distinct parts: [5], [4,1], [3,2]. So row 5 contains M(5;5) = 1, M(5;4,1) = 5 and M(5;3,2) = 10. Triangle T(n,k) begins: 1; 1; 1; 1, 3; 1, 4; 1, 5, 10; 1, 6, 15, 60; 1, 7, 21, 35, 105; 1, 8, 28, 56, 168, 280; 1, 9, 36, 84, 126, 252, 504, 1260; 1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600; 1, 11, 55, 165, 330, 462, 495, 1320, 2310, 4620, 6930, 27720; ...
Links
- Alois P. Heinz, Rows n = 0..45, flattened
- Wikipedia, Multinomial coefficients
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; `if`(i*(i+1)/2
binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]])) end: T:= n-> sort(g(n$2))[]: seq(T(n), n=0..14); -
Mathematica
g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[ Binomial[n, i] # & /@ g[n-i, Min[n-i, i-1]], g[n, i-1]]]]; T[n_] := Sort[g[n, n]]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Jan 27 2021, after Alois P. Heinz *)
Comments