cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309998 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 529)^2 = y^2.

Original entry on oeis.org

0, 276, 287, 740, 759, 1587, 3059, 3120, 5687, 5796, 10580, 19136, 19491, 34440, 35075, 62951, 112815, 114884, 202011, 205712, 368184, 658812, 670871, 1178684, 1200255, 2147211, 3841115, 3911400, 6871151, 6996876, 12516140, 22388936, 22798587, 40049280, 40782059, 72950687
Offset: 1

Views

Author

Mohamed Bouhamida, Aug 26 2019

Keywords

Comments

For the generic case x^2 + (x + p^2)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m>=5, (0; p^2) and (2*m^3 + 2*m^2 - 4*m - 4; m^4 + 2*m^3 - 4*m - 4) are solutions.

Crossrefs

Cf. A207059.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x^2*(276 + 11 x + 453 x^2 + 19 x^3 + 828 x^4 - 184 x^5 - 5 x^6 - 151 x^7 - 5 x^8 - 184 x^9)/((1 - x) (1 - 6 x^5 + x^10)), {x, 0, 36}], x] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    concat(0, Vec(x^2*(276 + 11*x + 453*x^2 + 19*x^3 + 828*x^4 - 184*x^5 - 5*x^6 - 151*x^7 - 5*x^8 - 184*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)) + O(x^40))) \\ Colin Barker, Aug 27 2019

Formula

a(n) = 6*a(n-5) - a(n-10) + 1058 with a(0) = 0, a(1) = 276, a(2) = 287, a(3) = 740, a(4) = 759, a(5) = 1587, a(6) = 3059, a(7) = 3120, a(8) = 5687, a(9) = 5796.
From Colin Barker, Aug 27 2019: (Start)
G.f.: x^2*(276 + 11*x + 453*x^2 + 19*x^3 + 828*x^4 - 184*x^5 - 5*x^6 - 151*x^7 - 5*x^8 - 184*x^9) / ((1 - x)*(1 - 6*x^5 + x^10)).
a(n) = a(n-1) + 6*a(n-5) - 6*a(n-6) - a(n-10) + a(n-11) for n>11.
(End)