cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316073 a(n) is the n-th term of the inverse Weigh transform of j-> n^(j-1).

Original entry on oeis.org

1, 2, 6, 46, 420, 5185, 77658, 1376768, 28133616, 651325653, 16846515510, 481472773386, 15067838554860, 512473605894549, 18821719654854998, 742395982483047976, 31299550394528466960, 1404629090183809673484, 66851805805525048040334, 3363381327122907537090234
Offset: 1

Views

Author

Alois P. Heinz, Jun 23 2018

Keywords

Crossrefs

Cf. A306173.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i, k), j)*b(n-i*j, i-1,k), j=0..n/i)))
        end:
    g:= proc(n, k) option remember; k^(n-1)-b(n, n-1, k) end:
    a:= n-> g(n$2):
    seq(a(n), n=1..21);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[g[i, k], j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = k^(n - 1) - b[n, n - 1, k];
    a[n_] := g[n, n];
    Array[a, 21] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) ~ (1 - exp(-1)) * n^(n-1). - Vaclav Kotesovec, Oct 08 2019