A316074
Sequence a_k of column k shifts left k places under Weigh transform and equals signum(n) for n=1, 1<=k<=n, read by rows.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 2, 2, 1, 1, 1, 12, 4, 2, 2, 1, 1, 1, 25, 6, 3, 2, 2, 1, 1, 1, 52, 10, 5, 3, 2, 2, 1, 1, 1, 113, 17, 7, 4, 3, 2, 2, 1, 1, 1, 247, 29, 10, 6, 4, 3, 2, 2, 1, 1, 1, 548, 51, 17, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1226, 89, 26, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 1, 1; 2, 1, 1, 1; 3, 2, 1, 1, 1; 6, 2, 2, 1, 1, 1; 12, 4, 2, 2, 1, 1, 1; 25, 6, 3, 2, 2, 1, 1, 1; 52, 10, 5, 3, 2, 2, 1, 1, 1; 113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i))) end: T:= (n, k)-> `if`(n
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]]; T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]]; Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)