A316089 Number of ordered (k_1, k_2, ..., k_r) such that (Z/nZ)* is isomorphic to C_{k_1} X C_{k_2} X ... X C_{k_r}. Here (Z/nZ)* is the multiplicative group of integers modulo n, r = rank((Z/nZ)*).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 4, 2, 1, 1, 4, 3, 1, 2, 1, 2, 4, 1, 1, 3, 1, 1, 2, 4, 1, 1, 4, 3, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 2, 4, 1, 3, 1, 1, 4, 2, 4, 4, 1, 3, 1, 1, 1, 3, 2, 1, 4
Offset: 1
Keywords
Examples
For n = 35, rank((Z/35Z)*) = 2, and (Z/35Z)* = C_2 X C_12 = C_12 X C_2 = C_4 X C_6 = C_6 X C_4, so a(35) = 4. Also, (Z/35Z)* = C_(2^1*3^0) X C_(2^2*3^1), e_11 = 1, e_12 = 0, e_21 = 2, e_22 = 1, so b_11 = b_12 = b_21 = b_22 = 1, then a(35) = (2!)^2 = 4. For n = 105, rank((Z/105Z)*) = 3, and (Z/105Z)* = C_2 X C_2 X C_12 (along with its two permutations) = C_2 X C_4 X C_6 (along with its five permutations), so a(105) = 9. Also, (Z/35Z)* = C_(2^1*3^0) X C_(2^1*3^0) X C_(2^2*3^1), e_11 = 1, e_12 = 0, e_21 = 1, e_22 = 0, e_31 = 2, e_32 = 1, so b_11 = b_12 = b_21 = b_22 = 2, b_31 = b_32 = 1, then a(105) = (3!)^2/(2!*2!) = 9.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- Wikipedia, Multiplicative group of integers modulo n
Programs
-
PARI
zp(g)={sum(i=1, #g, my(f=factor(g[i])); sum(j=1, #f~, x^f[j,1]*(y^f[j,2]-1)))} a(n)={my(g=znstar(n).cyc); my(p=zp(g), r=#g); prod(i=1, poldegree(p), my(u=Vec(r + polcoeff(p,i))); r!/prod(j=1, #u, u[j]!))} \\ Andrew Howroyd, Jun 30 2018
Formula
Let (Z/nZ)* = C_(Product_{j=1..k} p_j^e_1j) X C_(Product_{j=1..k} p_j^e_2j) X ... X C_(Product_{j=1..k} p_j^e_rj) where p_1, p_2, ..., p_k are different primes, 0 <= e_1j <= e_2j <= ... <= e_rj for 1 <= j <= k. Define b_ij = max{1 <= t <= r | e_tj = e_ij} - min{1 <= t <= r | e_tj = e_ij} + 1, then a(n) = (r!)^k/Product_{i=1..r, j=1..k} (b_ij)!^(1/b_ij).
Comments