A316093 Non-isomorphic colorings of the cube under rotations, using at most N colors on the faces and M colors on the vertices. Square array H(N,M) with N,M > 0 read by antidiagonals.
1, 10, 23, 57, 776, 333, 240, 8121, 17946, 2916, 800, 44608, 200961, 176160, 16725, 2226, 168675, 1124208, 1995852, 1045050, 70911, 5390, 501528, 4281300, 11198720, 11877825, 4485960, 241913, 11712, 1261701, 12773538, 42697300, 66700400, 51044337, 15385706, 701968, 23355, 2807296, 32195646, 127461216, 254387500, 286724160, 175153881, 44761216, 1798281, 43450, 5685903, 71718336, 321364540, 759518850, 1093653675, 983988208, 509689776, 114826410, 4173775
Offset: 1
Examples
Square array begins: 1, 10, 57, 240, 800, ... 23, 776, 8121, 44608, 168675, ... 333, 17946, 200961, 1124208, 4281300, ... 2916, 176160, 1995852, 11198720, 42697300, ...
Links
- Marko Riedel et al., coloring cube sides and vertices
Formula
H(N,M) = (1/24) (N^6 M^8 + 6 N^3 M^2 + 3 N^4 M^4 + 8 N^2 M^4 + 6 N^3 M^4).
Cycle index is (1/24)*(a1^6 b1^8 + 6 a1^2 a4 b4^2 + 3 a1^2 a2^2 b2^4 + 8 a3^2 b1^2 b3^2 + 6 a2^3 b2^4).