A316112 Number of leaves in the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 1, 3
Offset: 1
Keywords
Examples
e(21025) = o[o[o]][o] has 4 leaves so a(21025) = 4.
Crossrefs
Programs
-
Mathematica
nn=1000; radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1]; rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn]; a[n_]:=If[n==1,1,With[{g=GCD@@FactorInteger[n][[All,2]]},a[radPi[Power[n,1/g]]]+Sum[a[PrimePi[pr[[1]]]]*pr[[2]],{pr,If[g==1,{},FactorInteger[g]]}]]]; Table[a[n],{n,100}]
Formula
a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k) where rad = A007916.
Comments