A316116 Least odd primitive abundant number having its prime signature.
945, 1575, 2205, 3465, 5775, 7425, 8085, 12705, 15015, 28215, 47025, 49875, 69825, 78975, 81081, 103455, 131625, 153153, 182325, 189189, 297297, 342225, 351351, 363375, 387345, 392445, 474045, 532875, 570375, 692835, 742203, 793611, 1102725, 1380825, 1468935, 1612875
Offset: 1
Keywords
Examples
1575 = 3^2 * 5^2 * 7 has prime signature (2, 2, 1) and is an odd primitive abundant number (A006038). Since 1575 is the smallest such number, it is in the sequence. - _Michael B. Porter_, Nov 24 2018
Programs
-
Mathematica
lsig={}; lpab = {}; seq={}; Do[ d=Divisors[n]; If[Total[d] > 2 n && Intersection[ lpab, d] == {},AppendTo[lpab, n]; sig=FactorInteger[n][[;;,2]]; If[!MemberQ[ lsig,sig], AppendTo[seq, n]; AppendTo[lsig,sig]]],{n,3,1700000,2}]; seq (* Amiram Eldar, Dec 09 2018 *)
Comments