cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316116 Least odd primitive abundant number having its prime signature.

Original entry on oeis.org

945, 1575, 2205, 3465, 5775, 7425, 8085, 12705, 15015, 28215, 47025, 49875, 69825, 78975, 81081, 103455, 131625, 153153, 182325, 189189, 297297, 342225, 351351, 363375, 387345, 392445, 474045, 532875, 570375, 692835, 742203, 793611, 1102725, 1380825, 1468935, 1612875
Offset: 1

Views

Author

David A. Corneth, Aug 18 2018

Keywords

Comments

Ordering of exponents matters; 1575 and 2205 have unordered prime signatures (2, 2, 1) and (2, 1, 2) respectively.

Examples

			1575 = 3^2 * 5^2 * 7 has prime signature (2, 2, 1) and is an odd primitive abundant number (A006038). Since 1575 is the smallest such number, it is in the sequence. - _Michael B. Porter_, Nov 24 2018
		

Crossrefs

Programs

  • Mathematica
    lsig={}; lpab = {}; seq={}; Do[ d=Divisors[n]; If[Total[d] > 2 n && Intersection[ lpab, d] == {},AppendTo[lpab, n]; sig=FactorInteger[n][[;;,2]]; If[!MemberQ[ lsig,sig], AppendTo[seq, n]; AppendTo[lsig,sig]]],{n,3,1700000,2}]; seq (* Amiram Eldar, Dec 09 2018 *)