A316155 Numbers with additive persistence = 4 and digits in nondecreasing order.
19999999999999999999999, 28999999999999999999999, 37999999999999999999999, 38899999999999999999999, 46999999999999999999999, 47899999999999999999999, 48889999999999999999999, 55999999999999999999999, 56899999999999999999999, 57799999999999999999999, 57889999999999999999999
Offset: 1
Examples
Repeatedly taking the sum of digits starting with 19999999999999999999999 gives 199, 19, 10 and 1. There are four steps, so the additive persistence is 4 and 19999999999999999999999 is a member.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Additive Persistence
Programs
-
Maple
S:= proc(d,t,m) # d digits of sum t with max m option remember; local j; if d*m < t then return [] fi; if d = 1 then if t > 0 then return [[t]] else return [] fi fi; [seq(op(map(L -> [op(L),j], procname(d-1,t-j,j))),j=1..min(m,t))] end proc: seq(op(sort(map(t -> add(t[-i]*10^(i-1),i=1..nops(t)), S(d,199,9)))),d=23..24); # Robert Israel, Jun 25 2018
Formula
A031286(a(n)) = 4.
Comments