cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316227 Composite numbers k for which no nontrivial divisor shares any digits with k.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 46, 49, 54, 56, 57, 58, 68, 69, 76, 78, 81, 86, 87, 106, 111, 116, 118, 129, 134, 146, 158, 161, 166, 177, 188, 201, 219, 247, 249, 259, 267, 289, 323, 329, 334, 356, 358, 388, 413, 446, 454, 458, 466, 477, 478, 489
Offset: 1

Views

Author

Jason Zimba, Jun 27 2018

Keywords

Comments

A nontrivial divisor of k means a divisor greater than 1 and less than k.

Examples

			The nontrivial divisors of 54 are 2, 3, 6, 9, 18, and 27, none of which have a digit 5 or 4.
The nontrivial divisors of 248629501 are 337 and 737773.
The nontrivial divisors of 321810649 are 557 and 577757.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local S;
      if isprime(n) then return false fi;
      S:= convert(convert(n,base,10),set);
      andmap(d -> convert(convert(d,base,10),set) intersect S = {}, numtheory:-divisors(n) minus {1,n})
    end proc:
    select(filter, [$4..1000]); # Robert Israel, Jul 22 2018
  • Mathematica
    MaxCheck = 1000; (* modify as desired *)
    ResultList = {};
    Do[
      If[
       Not[PrimeQ[k]] &&
        Intersection[
          Flatten[
           Map[
            IntegerDigits,
            Complement[Divisors[k], {1, k}]
            ]
           ],
          IntegerDigits[k]
          ] == {},
       ResultList = Append[ResultList, k]
       ],
      {k, 2, MaxCheck}];
    ResultList
    (* or *) Select[Range@500, CompositeQ@# && Intersection[ IntegerDigits@#, Flatten@ IntegerDigits@ Most@ Rest@ Divisors@ #] == {} &] (* Giovanni Resta, Jun 27 2018 *)
  • PARI
    isok(n) = {my(d=divisors(n), dd = Set(digits(n))); for (k=2, #d-1, if (#setintersect(Set(digits(d[k])), dd), return (0));); return (1);}
    lista(nn) = {forcomposite(n=1, nn, if (isok(n), print1(n, ", ")););} \\ Michel Marcus, Jul 03 2018