A316269 Array T(n,k) = n*T(n,k-1) - T(n,k-2) read by upward antidiagonals, with T(n,0) = 0, T(n,1) = 1, n >= 2.
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 8, 4, 0, 1, 5, 15, 21, 5, 0, 1, 6, 24, 56, 55, 6, 0, 1, 7, 35, 115, 209, 144, 7, 0, 1, 8, 48, 204, 551, 780, 377, 8, 0, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 0, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10
Offset: 2
Examples
The array starts in row n = 2 with columns k >= 0 as follows: 0 1 2 3 4 5 6 0 1 3 8 21 55 144 0 1 4 15 56 209 780 0 1 5 24 115 551 2640 0 1 6 35 204 1189 6930 0 1 7 48 329 2255 15456 0 1 8 63 496 3905 30744 0 1 9 80 711 6319 56160 0 1 10 99 980 9701 96030 0 1 11 120 1309 14279 155760
Links
- Jianing Song, Antidiagonals n = 2..101, flattened
Crossrefs
Programs
-
Mathematica
Table[If[# == 2, k, Simplify[(((# + Sqrt[#^2 - 4])/2)^k - ((# - Sqrt[#^2 - 4])/2)^k)/Sqrt[#^2 - 4]]] &[n - k + 2], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 19 2018 *)
-
PARI
T(n, k) = if (k==0, 0, if (k==1, 1, n*T(n,k-1) - T(n,k-2))); tabl(nn) = for(n=2, nn, for (k=0, nn, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 03 2018
-
PARI
T(n, k) = ([n, -1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
Formula
T(2,k) = k; T(n,k) = (((n+sqrt(n^2 - 4))/2)^k - ((n - sqrt(n^2 - 4))/2)^k)/sqrt(n^2 - 4), n >= 3, k >= 0.
For n >= 2, Sum_{i=1..k} 1/T(n,2^i) = 2/n - ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/T(n,2^k)), where u = (n + sqrt(n^2 - 4))/2, v = (n - sqrt(n^2 - 4))/2 are the two roots of the polynomial x^2 - n*x + 1. As a result, Sum_{i=>1} 1/T(n,2^i) = (n - sqrt(n^2 - 4))/2. - Jianing Song, Apr 21 2019
Comments