cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316292 Number T(n,k) of permutations p of [n] such that k is the maximum of the partial sums of the signed up-down jump sequence of 0,p; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 5, 8, 16, 5, 50, 65, 1, 79, 314, 326, 69, 872, 2142, 1957, 34, 1539, 8799, 16248, 13700, 9, 1823, 24818, 89273, 137356, 109601, 1, 1494, 50561, 355271, 947713, 1287350, 986410, 856, 76944, 1070455, 4923428, 10699558, 13281458, 9864101
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2018

Keywords

Comments

An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump -j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.

Examples

			Triangle T(n,k) begins:
: 1;
:    1;
:       2;
:       1, 5;
:          8, 16;
:          5, 50,   65;
:          1, 79,  314,   326;
:             69,  872,  2142,   1957;
:             34, 1539,  8799,  16248,  13700;
:              9, 1823, 24818,  89273, 137356,  109601;
:              1, 1494, 50561, 355271, 947713, 1287350, 986410;
		

Crossrefs

Row sums give A000142.
Column sums give A316294.
Main diagonal gives A000522.
Cf. A002024, A123578, A258829, A291722, A303697, A316293 (same read by columns).

Programs

  • Maple
    b:= proc(u, o, c, k) option remember;
          `if`(c>k, 0, `if`(u+o=0, 1,
           add(b(u-j, o-1+j, c+j, k), j=1..u)+
           add(b(u+j-1, o-j, c-j, k), j=1..o)))
        end:
    T:= (n, k)-> b(n, 0$2, k) -`if`(k=0, 0, b(n, 0$2, k-1)):
    seq(seq(T(n, k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);
  • Mathematica
    b[u_, o_, c_, k_] := b[u, o, c, k] =
         If[c > k, 0, If[u + o == 0, 1,
         Sum[b[u - j, o - 1 + j, c + j, k], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, c - j, k], {j, 1, o}]]];
    T[n_, k_] := b[n, 0, 0, k] - If[k == 0, 0, b[n, 0, 0, k - 1]];
    Table[Table[T[n, k], {k, Ceiling[(Sqrt[8n+1]-1)/2], n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 27 2021, after Alois P. Heinz *)