A316292 Number T(n,k) of permutations p of [n] such that k is the maximum of the partial sums of the signed up-down jump sequence of 0,p; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.
1, 1, 2, 1, 5, 8, 16, 5, 50, 65, 1, 79, 314, 326, 69, 872, 2142, 1957, 34, 1539, 8799, 16248, 13700, 9, 1823, 24818, 89273, 137356, 109601, 1, 1494, 50561, 355271, 947713, 1287350, 986410, 856, 76944, 1070455, 4923428, 10699558, 13281458, 9864101
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 2; : 1, 5; : 8, 16; : 5, 50, 65; : 1, 79, 314, 326; : 69, 872, 2142, 1957; : 34, 1539, 8799, 16248, 13700; : 9, 1823, 24818, 89273, 137356, 109601; : 1, 1494, 50561, 355271, 947713, 1287350, 986410;
Links
- Alois P. Heinz, Rows n = 0..120, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, c, k) option remember; `if`(c>k, 0, `if`(u+o=0, 1, add(b(u-j, o-1+j, c+j, k), j=1..u)+ add(b(u+j-1, o-j, c-j, k), j=1..o))) end: T:= (n, k)-> b(n, 0$2, k) -`if`(k=0, 0, b(n, 0$2, k-1)): seq(seq(T(n, k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);
-
Mathematica
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + j, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - j, k], {j, 1, o}]]]; T[n_, k_] := b[n, 0, 0, k] - If[k == 0, 0, b[n, 0, 0, k - 1]]; Table[Table[T[n, k], {k, Ceiling[(Sqrt[8n+1]-1)/2], n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 27 2021, after Alois P. Heinz *)
Comments