cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316314 Number of distinct nonempty-subset-averages of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 5, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 8, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 7, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 8, 3, 3, 3, 5, 1, 7, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5, 1, 7, 1, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2018

Keywords

Comments

A rational number q is a nonempty-subset-average of an integer partition y if there exists a nonempty submultiset of y with average q.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(42) = 7 subset-averages of (4,2,1) are 1, 3/2, 2, 7/3, 5/2, 3, 4.
The a(72) = 7 subset-averages of (2,2,1,1,1) are 1, 5/4, 4/3, 7/5, 3/2, 5/3, 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Mean/@Rest[Subsets[primeMS[n]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A316314(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = v056239[d]/bigomega(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A316398(n) - 1.

Extensions

More terms from Antti Karttunen, Sep 23 2018