A316347 a(n) = n^2 mod(10^m), where m is the number of digits in n (written in base 10).
0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29
Offset: 0
Examples
n = 13 has 2 digits in base 10, thus a(13) = 169 mod 100 = 69.
Links
- Georg Fischer, Table of n, a(n) for n = 0..10000, Jan 16 2019 (terms a(0..719585) initially submitted by Christopher D Chamness).
Crossrefs
Cf. A238712.
Programs
-
PARI
a(n) = n^2 % 10 ^ #digits(n) \\ David A. Corneth, Jun 30 2018
-
Perl
my $mod = 10; foreach my $i(0..10000) { print "$i " . (($i * $i) % $mod) . "\n"; if (length($i + 1) > length($i)) { $mod *= 10; } } # Georg Fischer, Jan 16 2019
-
Python
i=0 while True: m=i j=i**2 l=0 while True: m=m//10 l+=1 if m==0: break mod_num = 10**l print(j%mod_num) i+=1
Comments