cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316371 G.f.: A(x) = Sum_{n>=0} binomial(3*(n+1), n)/(n+1) * x^n / (1+x)^(2*(n+1)).

Original entry on oeis.org

1, 1, 3, 9, 30, 105, 382, 1429, 5463, 21248, 83813, 334485, 1348102, 5479366, 22433934, 92437445, 383026643, 1595053047, 6672007021, 28020635404, 118106170713, 499454897337, 2118477808719, 9010443044061, 38420834606794, 164210479691902, 703352241046710, 3018668702116310, 12979807315841432, 55908387904005714
Offset: 0

Views

Author

Paul D. Hanna, Jul 02 2018

Keywords

Comments

Note that: binomial(3*(n+1), n)/(n+1) = A001764(n+1) for n >= 0, where F(x) = Sum_{n>=0} A001764(n)*x^n satisfies F(x) = 1 + x*F(x)^3.
Compare the g.f. to:
(C1) M(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(n+1) where M(x) = 1 + M(x) + M(x)^2 is the g.f. of Motzkin numbers (A001006).
(C2) 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
(C3) If S(x,p,q) = Sum_{n>=0} binomial(p*(n+1),n)/(n+1) * x^n/(1+x)^(q*(n+1)), then Series_Reversion ( x*S(x,p,q) ) = x*S(x,q,p) holds for fixed p and q.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 105*x^5 + 382*x^6 + 1429*x^7 + 5463*x^8 + 21248*x^9 + 83813*x^10 + 334485*x^11 + 1348102*x^12 + ...
such that
A(x) = 1/(1+x)^2 + 3*x/(1+x)^4 + 12*x^2/(1+x)^6 + 55*x^3/(1+x)^8 + 273*x^4/(1+x)^10 + 1428*x^5/(1+x)^12 + ... + A001764(n+1)*x^n/(1+x)^(2*(n+1)) + ...
RELATED SERIES.
(E1) 1 - 1/A(x) = x + 2*x^2 + 4*x^3 + 11*x^4 + 34*x^5 + 114*x^6 + 402*x^7 + 1470*x^8 + 5522*x^9 + 21181*x^10 + 82610*x^11 + 326611*x^12 + ...
where A(1/A(x) - 1) = 1/(1+x).
(E2) Series_Reversion( x*A(x) ) = x - x^2 - x^3 + x^4 + 2*x^5 - 4*x^7 - 4*x^8 + 5*x^9 + 15*x^10 + 4*x^11 - 34*x^12 - 49*x^13 + 35*x^14 + 174*x^15 + ...
which equals the sum:
Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(3*(n+1)).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, binomial(3*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(2*(m+1)))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A( 1/A(x) - 1 ) = 1/(1+x).
(2) A(x) = (1 + 3*x^2*A(x)^2 + x^3*A(x)^3) / (1 - x + x^2).
(3) A(x) = (1/x) * Series_Reversion( (1 + x + 3*x^2 + x^3 - (1+x)*sqrt(1 + 2*x^2 + 4*x^3 + x^4))/(2*x) ).
a(n) ~ 33^(1/4) * (19 + 3*sqrt(33))^(n+1) / (sqrt(3*Pi) * n^(3/2) * 2^(3*n + 5)). - Vaclav Kotesovec, Jul 06 2018