A316371 G.f.: A(x) = Sum_{n>=0} binomial(3*(n+1), n)/(n+1) * x^n / (1+x)^(2*(n+1)).
1, 1, 3, 9, 30, 105, 382, 1429, 5463, 21248, 83813, 334485, 1348102, 5479366, 22433934, 92437445, 383026643, 1595053047, 6672007021, 28020635404, 118106170713, 499454897337, 2118477808719, 9010443044061, 38420834606794, 164210479691902, 703352241046710, 3018668702116310, 12979807315841432, 55908387904005714
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 105*x^5 + 382*x^6 + 1429*x^7 + 5463*x^8 + 21248*x^9 + 83813*x^10 + 334485*x^11 + 1348102*x^12 + ... such that A(x) = 1/(1+x)^2 + 3*x/(1+x)^4 + 12*x^2/(1+x)^6 + 55*x^3/(1+x)^8 + 273*x^4/(1+x)^10 + 1428*x^5/(1+x)^12 + ... + A001764(n+1)*x^n/(1+x)^(2*(n+1)) + ... RELATED SERIES. (E1) 1 - 1/A(x) = x + 2*x^2 + 4*x^3 + 11*x^4 + 34*x^5 + 114*x^6 + 402*x^7 + 1470*x^8 + 5522*x^9 + 21181*x^10 + 82610*x^11 + 326611*x^12 + ... where A(1/A(x) - 1) = 1/(1+x). (E2) Series_Reversion( x*A(x) ) = x - x^2 - x^3 + x^4 + 2*x^5 - 4*x^7 - 4*x^8 + 5*x^9 + 15*x^10 + 4*x^11 - 34*x^12 - 49*x^13 + 35*x^14 + 174*x^15 + ... which equals the sum: Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(3*(n+1)).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400
Programs
-
PARI
{a(n) = my(A = sum(m=0,n, binomial(3*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(2*(m+1)))); polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Formula
G.f. A(x) satisfies:
(1) A( 1/A(x) - 1 ) = 1/(1+x).
(2) A(x) = (1 + 3*x^2*A(x)^2 + x^3*A(x)^3) / (1 - x + x^2).
(3) A(x) = (1/x) * Series_Reversion( (1 + x + 3*x^2 + x^3 - (1+x)*sqrt(1 + 2*x^2 + 4*x^3 + x^4))/(2*x) ).
a(n) ~ 33^(1/4) * (19 + 3*sqrt(33))^(n+1) / (sqrt(3*Pi) * n^(3/2) * 2^(3*n + 5)). - Vaclav Kotesovec, Jul 06 2018
Comments