A316404 Number of multisets of exactly three nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 83, 230, 568, 1451, 3439, 8384, 19390, 45708, 103770, 238855, 534400, 1208485, 2672043, 5959769, 13051586, 28792488, 62551270, 136760659, 295115360, 640444498, 1374092646, 2963283862, 6326402780, 13569867602, 28846140436, 61586022487, 130422459008
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 4) end: a:= n-> coeff(b(n$2), x, 3): seq(a(n), n=3..33);
Formula
a(n) = [x^n y^3] 1/Product_{j>=1} (1-y*x^j)^A027306(j).