A316405 Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 270, 738, 1935, 5004, 12580, 31354, 76444, 185305, 441363, 1046837, 2447913, 5705753, 13143961, 30202325, 68719396, 156034994, 351348607, 789783351, 1762658134, 3928209272, 8700183502, 19244947618, 42340195770, 93049476310, 203518456343
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5) end: a:= n-> coeff(b(n$2), x, 4): seq(a(n), n=4..33);
Formula
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^j)^A027306(j).