A316406 Number of multisets of exactly five nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 798, 2200, 5804, 15275, 39014, 99214, 247065, 612090, 1492837, 3622213, 8682565, 20711303, 48923317, 115048586, 268374750, 623503251, 1438753371, 3307821910, 7560955644, 17225642730, 39047321794, 88249150462, 198572820286, 445610719629
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 6) end: a:= n-> coeff(b(n$2), x, 5): seq(a(n), n=5..34);
Formula
a(n) = [x^n y^5] 1/Product_{j>=1} (1-y*x^j)^A027306(j).